CYLINDERS CONNECTED IN PARALLEL WITH DIFFERENT AREAS

Which cylinder will extend first, as the pump flow rate is divided at the " T " connection?
By studying the calculations below, it will be seen, the larger diameter cylinder will extend first. first?

Copyright 2020-Garnett Cross
http://GarnettCross.com

Assume there is a 5ton load on each cylinder
Force $(N)=$ Tons $\times 1000 \times 9,81$
$=5 \times 1000 \times 9,81$
$=49050$ Newton

The left-hand cylinder $=200 \mathrm{~mm}$ diameter. The right-hand cylinder $=100 \mathrm{~mm}$ diameter.

$$
\text { Area }=\frac{3,142 \times 200^{2}}{4}
$$

$$
=31420 \mathrm{~mm}^{2}
$$

$$
\text { Area }=\frac{\pi \times D^{2}}{4}
$$

$$
\frac{31420}{7855}=4
$$

Area $=\frac{3,142 \times 100^{2}}{4}$
$=7855 \mathrm{~mm}^{2}$

The area of the 200 mm diameter cylinder is 4 times larger than the area of the 100 mm diameter cylinder

The load on the 200 mm dia. cylinder causes 4 times less pressure than the load on the 100 mm dia. cylinder.
Assume a pump of 50 litres/minute
Determine the Velocity (Speed) of each cylinder using a 50 litre per minute pump.

$$
V(\text { mm per min. })=\frac{Q\left(\text { litres per } \min . \times 10^{6}\right)}{\text { Area }\left(\mathrm{mm}^{2}\right)}
$$

$$
10^{6}=1000000 \text { cubic millimeters in a litre }
$$

$\begin{gathered} \text { Velocity }=\frac{50 \times 10^{6}}{31420} \\ =\mathbf{1 5 9 1}, \mathbf{3 4 3} \text { mm per min. } . \end{gathered}$	$\frac{6363,372}{1591,343}=4$	$\begin{gathered} \text { Velovity }=\frac{50 \times 10^{6}}{7855} \\ =\mathbf{6 3 6 5 , 3 7 2} \mathbf{~ m m ~ p e r ~ m i n . ~} . \end{gathered}$

The 200 mm diameter cylinder is 4 times slower than the 100 mm diameter cylinder

